
Laboratorio di Tecnologie
dell'Informazione

Ing. Marco Bertini
marco.bertini@unifi.it

http://www.micc.unifi.it/bertini/

lunedì 10 marzo 14

mailto:marco.bertini@unifi.it?subject=
mailto:marco.bertini@unifi.it?subject=
http://www.micc.unifi.it/bertini/
http://www.micc.unifi.it/bertini/

Classes and objects

lunedì 10 marzo 14

Why abstraction ?

• Helps in modeling the problem, separating
between necessary and unnecessary details

• We want to obtain a separation between:

• operations performed on data

• representation of data structures and
algorithms implementation

• abstraction is the structuring of a nebulous
problem into well-defined entities by
defining their data and (coupled) operations.

lunedì 10 marzo 14

ADT (Abstract Data Type)

• An ADT is a specification of a set of data and the
set of operations (the ADT’s interface) that can be
performed on the data.

• It is abstract in the sense that it is independent of
various concrete implementations.

• When realized in a computer program, the ADT is
represented by an interface, which shields a
corresponding implementation. Users of an ADT
are concerned with the interface, but not the
implementation, that can change in the future.

lunedì 10 marzo 14

http://en.wikipedia.org/wiki/Implementation
http://en.wikipedia.org/wiki/Implementation

ADT (Abstract Data Type) - cont.

Stack ADT
data=<d1,d2,...,dn)

n
Top-of-stack

dati operazioni

push(x)
pop()
top()

Interface Interface

User

lunedì 10 marzo 14

Why encapsulation ?

• The principle of hiding the used data structure
and to only provide a well-defined interface is
known as encapsulation.

• The separation of data structures and
operations and the constraint to only access
the data structure via a well-defined interface
allows you to choose data structures
appropriate for the application environment.

lunedì 10 marzo 14

Why classes ?
• A class is an actual representation of an ADT: it

provides implementation details for the data structure
used and operations.

• Recall the important distinction between a class and
an object:

• A class is an abstract representation of a set of
objects that behave identically.

• Objects (i.e. variables) are instantiated from classes.

• classes define properties and behaviour of sets of
objects.

lunedì 10 marzo 14

Classes and objects

• A class is the implementation of an abstract
data type (ADT). It defines attributes and
methods which implement the data structure
and operations of the ADT, respectively.

• An object is an instance of a class. It can be
uniquely identified by its name and it defines a
state which is represented by the values of its
attributes at a particular time.

• The behaviour of an object is defined by the
set of methods which can be applied on it.

lunedì 10 marzo 14

Procedural programming

• There’s a division between data and
operations on data

• The focus of procedural programming is to
break down a programming task into a
collection of variables, data structures, and
subroutines

• When programming in C we focus on data
structures and functions

lunedì 10 marzo 14

http://en.wikipedia.org/wiki/Data_structures
http://en.wikipedia.org/wiki/Data_structures
http://en.wikipedia.org/wiki/Subroutines
http://en.wikipedia.org/wiki/Subroutines

OO programming

• In object-oriented programming the focus is to
break down a programming task into objects
and interactions between objects.

• An object is associated to data and operations
on its data, e.g.:

• an object “oven” has an internal data
representing temperature and an operation
that changes the temperature

lunedì 10 marzo 14

http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Object_(computer_science)
http://en.wikipedia.org/wiki/Object_(computer_science)

Why C++ classes ?

• A C++ class can provide information hiding:

• Hides the internal representation of data

• Hides the implementation details of
operations

• The class acts like a black box, providing a
service to its clients, without opening up its
code so that it can be used in the wrong way

lunedì 10 marzo 14

Open-Closed Principle

• Encapsulation is a key technique in following
the Open-Closed principle:

• classes should be open for extension and
closed for modification

• We want to allow changes to the system, but
without requiring to modifying existing code

lunedì 10 marzo 14

Open-Closed Principle

• Encapsulation is a key technique in following
the Open-Closed principle:

• classes should be open for extension and
closed for modification

• We want to allow changes to the system, but
without requiring to modifying existing code

Open-Closed Principle:

Software entities (classes, modules,
functions, etc.) should be open for
extension, but closed for modification.
- Bertrand Meyer

lunedì 10 marzo 14

Open-Closed Principle - cont.

• if a class has a particular behaviour, coded the
way we want, if nobody can change the class
code we have closed it for modification.

• but if, for some reasons, we have to extend that
behaviour we can let to extend the class to
override the method and provide new
functionality. The class is open for extension.

• We’ll see how inheritance and composition will
help us to follow this principle.

lunedì 10 marzo 14

Why OCP ?

• Here’s a small example (in C) that shows a
case in which the code is not closed to
modifications. We’ll see how, using inheritance
and abstractions, we can solve the problem.

lunedì 10 marzo 14

Why OCP ?

• Here’s a small example (in C) that shows a
case in which the code is not closed to
modifications. We’ll see how, using inheritance
and abstractions, we can solve the problem.

enum ShapeType {circle, square};

struct Shape {
 ShapeType itsType;
};

struct Circle {
 ShapeType itsType;
 double itsRadius;
 Point itsCenter;
};

struct Square {
 ShapeType itsType;
 double itsSide;
 Point itsTopLeft;
};

// These functions are implemented elsewhere
void DrawSquare(struct Square*);
void DrawCircle(struct Circle*);

typedef struct Shape *ShapePointer;

void DrawAllShapes(ShapePointer list[], int n)
{
 int i;
 for (i=0; i<n; i++) {
 struct Shape* s = list[i];
 switch (s->itsType) {
 case square:
 DrawSquare((struct Square*)s);
 break;
 case circle:
 DrawCircle((struct Circle*)s);
 break;
 }
 }
}

lunedì 10 marzo 14

Why OCP ?

• Here’s a small example (in C) that shows a
case in which the code is not closed to
modifications. We’ll see how, using inheritance
and abstractions, we can solve the problem.

enum ShapeType {circle, square};

struct Shape {
 ShapeType itsType;
};

struct Circle {
 ShapeType itsType;
 double itsRadius;
 Point itsCenter;
};

struct Square {
 ShapeType itsType;
 double itsSide;
 Point itsTopLeft;
};

// These functions are implemented elsewhere
void DrawSquare(struct Square*);
void DrawCircle(struct Circle*);

typedef struct Shape *ShapePointer;

void DrawAllShapes(ShapePointer list[], int n)
{
 int i;
 for (i=0; i<n; i++) {
 struct Shape* s = list[i];
 switch (s->itsType) {
 case square:
 DrawSquare((struct Square*)s);
 break;
 case circle:
 DrawCircle((struct Circle*)s);
 break;
 }
 }
}

It does not conform to the open-closed
principle because it cannot be closed against
new kinds of shapes.
If I wanted to extend this function to be able
to draw a list of shapes that included
triangles, I would have to modify the func-
tion.
In fact, I would have to modify the function
for any new type of shape that I needed to
draw.

lunedì 10 marzo 14

Class identification

• Identify real world objects or entities as
potential classes of software objects

• The usual approach is to think about the real
world objects that exist in the application
domain which is being programmed.
Instead of thinking about what processing has
to be done, as we so often do in procedural
programming, we instead think about what
things exist.

lunedì 10 marzo 14

Class identification - cont.

• Identify groups of objects that behave
similarly, that can be implemented as classes

• Classes are specifications for objects

• Delay decisions about implementation details,
such as what data and operations will apply to
objects, until we have a clear idea of what
classes of object will be required

lunedì 10 marzo 14

Class identification - cont.

• Begin class modeling by identifying candidate
classes - an initial list of classes from which the
actual design classes will emerge.

• A rule of the thumb to identify candidate
classes: identify the noun and noun phrases,
verbs (actions) and adjectives (attributes) from
the use cases and problem description

• there are more formal methods to identify
(e.g. CRC cards, use cases) and represent
(e.g. UML) classes

lunedì 10 marzo 14

C++ Classes

• A C++ class extends the concept of C structs

• It collects together a group of variables (attributes
or data members) that can be referenced to using
a collective name and a symbolic identifier

• It can have functions (methods or function
members) that operate within the context of the
class

• It defines a data type: we can create instances
(objects)

lunedì 10 marzo 14

Class definition

• Use the keyword class, e.g.:
class Stack {
 bool push(data value);
 bool pop(data* pValue);
 void init(int size);

 int TOS;
 data* buffer;
 int size;
}; // do NOT forget the ; !

lunedì 10 marzo 14

Class definition

• Use the keyword class, e.g.:
class Stack {
 bool push(data value);
 bool pop(data* pValue);
 void init(int size);

 int TOS;
 data* buffer;
 int size;
}; // do NOT forget the ; !

Note: this class is
still missing
something and
would NOT work
as expected... we’ll
see a more
complete
implementation in
a few slides

lunedì 10 marzo 14

A C stack implementation

struct stack {
int TOS;
data *buffer;
int size;

};
bool push(struct stack *ptr, data value) {
...
}
bool pop(struct stack *ptr, data *pValue) {
...
}

lunedì 10 marzo 14

Access level

• All the members of a struct are visible as
soon as there’s a reference to the structure,
while in a class it is possible to differentiate
the access as public, private and protected.
The default class access is private.

• We can design better the “interface” of the
class, i.e. decide what can is hidden and what
is visible in the class (encapsulation). We can
decouple classes.

lunedì 10 marzo 14

Access levels

• public: a public member is visible to anyone
who has an address or a reference to the
object

• private: a private member is visible only to the
methods of the class in which it is defined

• protected: a protected member is visible only
to the methods of the class in which it is
defined, and in the derived classes (through and
inheritance mechanism)

lunedì 10 marzo 14

Access levels: example
class Stack {
public:

bool push(data value);
bool pop(data* pValue);
void init(int size);

private:
int TOS;
data* buffer;
int size;

};
bool Stack::push(data value) {};

lunedì 10 marzo 14

Access levels: rules of the thumb

• Always use explicit access control

• Do not have public data members

• use public methods to set/get their values

• many IDEs can create these methods
automatically

lunedì 10 marzo 14

Getter/setter creation
in Eclipse

lunedì 10 marzo 14

Getter/setter creation
in Eclipse

lunedì 10 marzo 14

Getter/setter creation
in Eclipse

lunedì 10 marzo 14

Getter/setter creation
in Eclipse

lunedì 10 marzo 14

Method implementation

• The methods are usually defined
(implemented) in the .cpp files:
add the class name in front of the method,
e.g.:

bool Stack::push(data value) {
// code to implement the method
}

• We can implement them also in the header
(inline), but usually this is done only if they
are very short (e.g. ~5-7 lines)

lunedì 10 marzo 14

Attributes

• A method may access the attributes of the
class: the attributes are visible within the
methods

• this greatly reduces the complexity of C
“interfaces”: compare the C++
implementation with a C implementation

• The attributes maintain the “state” of the
object

lunedì 10 marzo 14

Attributes - cont.

• The attributes are a sort of a context
shared by the methods (that’s why
interfaces are simpler).

• However, the methods are more coupled
with the attributes.

• It’s well worth to pay for this price, if the
classes have been designed to have
cohesive responsibilities*

*a responsibility is something that a class knows or does.

lunedì 10 marzo 14

How to use methods
and attributes ?

• Class members can be referenced to
analogously to struct members:

<var>.member_name
<expr_addr>->member_name

but taking into account their visibility, defined
by the access level, e.g.

lunedì 10 marzo 14

How to use methods and
attributes: example

Stack s;
Stack* pS;
...
pS = &s;
...
s.push(3);
...

pS->push(8);

lunedì 10 marzo 14

Argument passing
• In C the argument passing mechanism is

“pass by value”: the value of run-time
arguments are copied in the formal
parameters

• a function uses the copy of the values to
carry out its computation

• we have to use pointers to simulate a
“pass by reference”

• In C++ we can pass parameters by
reference

lunedì 10 marzo 14

Pass by reference

• A reference is essentially a synonym (alias) in the
sense that there is no copying of the data passed
as the actual argument.

• It is indicated by the ampersand (&) characters
following the argument base type.

• C++ call by reference and C-style simulated call
by reference using pointers are similar, but there
are no explicit pointers involved: no need to
dereference the argument.

lunedì 10 marzo 14

Pass by reference - cont.

void add(int a, int b, int& sum) {
 sum = a + b;
}

int main() {
 int i = 1;
 int j = 2;
 int total = 0;
 cout << “total: “ << total << endl;
 add(i, j, total);
 cout << “total: “ << total << endl;
}

lunedì 10 marzo 14

Pass by reference - cont.

void f(int m, double& x) {
 m = 100;
 x = 3.14
}
int main() {
 int s = 50;
 double t = 2.72;
 f(s,t);
 return 0;
}

50 50

2.72 x

s m

t

Function call f(s, t);

50 50

2.72 x

s m

t

Function call f(s, t);

lunedì 10 marzo 14

Pass by reference - cont.

void f(int m, double& x) {
 m = 100;
 x = 3.14
}
int main() {
 int s = 50;
 double t = 2.72;
 f(s,t);
 return 0;
}

50 100

2.72 x

s m

t

m = 100;

50 100

2.72 x

s m

t

m = 100;

lunedì 10 marzo 14

Pass by reference - cont.

void f(int m, double& x) {
 m = 100;
 x = 3.14
}
int main() {
 int s = 50;
 double t = 2.72;
 f(s,t);
 return 0;
}

50 100

3.14 x

s m

t

x = 3.14;

50 100

3.14 x

s m

t

x = 3.14;

lunedì 10 marzo 14

Pass by reference - cont.

• A reference can be specified as const: the
function/method can not modify the
content of the variable

• pass large data structures that should not
be modified as const references (it’s fast)

lunedì 10 marzo 14

Reference variables

• It is possible to have a reference variable, but it must
always hold a valid reference and so must be
initialised when it is created.
int x;
int& y=x; // reference
y=2; // also x is modified
int& z; // Error: doesn’t compile ! Why ?
int *z; // pointer
z = &x; // & on the left is different from & on the right of =
*z = 3; // x is modified

lunedì 10 marzo 14

Reference vs. pointer
Pointers

• Pointers are like other
variables

• Can have a pointer to
void

• Can be assigned
arbitrary values

• It is possible to do
arithmetic

References

• Must be initialised

• Cannot have
references to void

• Cannot be assigned
Cannot do arithmetic

lunedì 10 marzo 14

Reference vs. pointer

• References are much less powerful than
pointers

• However, they are much safer than pointers

• The programmer cannot accidentally misuse
references, whereas it is easy to misuse pointers

lunedì 10 marzo 14

John Carmack on pointers vs. references

• “NULL pointers are the biggest problem in C/C++, at
least in our code. The dual use of a single value as
both a flag and an address causes an incredible
number of fatal issues. C++ references should be
favored over pointers whenever possible; while a
reference is “really” just a pointer, it has the implicit
contract of being not-NULL. Perform NULL checks
when pointers are turned into references, then you
can ignore the issue thereafter. There are a lot of
deeply ingrained game programming patterns that are
just dangerous, but I’m not sure how to gently migrate
away from all the NULL checking.”

lunedì 10 marzo 14

C++11 nullptr

• The newest C++ standard (C++11) provides a
new special keyword: nullptr to set and to
determine if a pointer is pointing to nothing.

• E.g.:

int *pa = &a;
pa = nullptr;
if (pa != nullptr) { }

lunedì 10 marzo 14

C++11 nullptr

• The newest C++ standard (C++11) provides a
new special keyword: nullptr to set and to
determine if a pointer is pointing to nothing.

• E.g.:

int *pa = &a;
pa = nullptr;
if (pa != nullptr) { }•It means that you need:

• a C++11 compiler (e.g. g++ version >= 4.2 or clang++ >= 3.x)
• use the appropriate switches to activate C++11 compilation

•e.g. “-std=c++11 -stdlib=libc++” for clang++

lunedì 10 marzo 14

C++11 nullptr - cont.

• Using nullptr makes code more clear and safe,
e.g.:

void	 test(int	 *);
void	 test(int);
	
void	 foo()
{
	 test(0);
	 test(NULL);
}
	
//	 which	 function	
//	 will	 be	 called

void	 test(int	 *)
void	 test(int);
	
test(nullptr);	 //	 clear	 now!

lunedì 10 marzo 14

nullptr vs. NULL vs. 0

• NULL is simply defined as 0

• nullptr is a fundamental type that’s specific for
pointers

• can not be converted to 0 or any int...

lunedì 10 marzo 14

Overloading

• We can define more than one methods
with the same name and return type, but
with different (number and types)
parameters (signature). The method is said
to be overloaded.

• Commonly used to provide alternate
versions of functions to be used in different
situations

• the same abstract operation may have
different concrete implementations

lunedì 10 marzo 14

Overloading - cont.

• The compiler will create a different code segment
and symbol (through name mangling), obtained
extending the method name with suffixes
related to the types of
the parameters

• we can not just change the return value: the compiler
should always check the type of the variable where
we put the value... and what if we discard it ?

lunedì 10 marzo 14

Operator overloading

• It is possible to overload also operators, not only
methods (in real life: + is an operator used for
integers, real numbers, complex numbers...)

• Overload operators when it really makes sense

• e.g. overload == to compare strings, do not
overload * for strings...

• Some OO languages do not allow operator
overloading, most notably Java*

*sort of... String + is operator overload

lunedì 10 marzo 14

Operator overloading - cont.

• Operators are overloaded so that the objects
behave as primitive types. New operators
cannot be created, only the functionality of
existing operators on objects can be modified

• If you overload + do NOT expect that += is
given automatically ! Define also that
operator !

• Often operators are just friends... (more later)

lunedì 10 marzo 14

Operator overloading - cont.

class Array {
public:
 Array(int size); // constructor
 bool operator ==(const Array& right) const; //the method can’t modify
anything
 // ... other members
private:
 int size;
 int* data; // pointer to first element of array
};
bool Array::operator==(const Array& right) const {
 if (size != right.size) // start checking the size of the arrays
 return false;
 // then check the whole content of arrays
 for (int i=0; i < size; i++) {
 if (data[i] != right.data[i])
 return false;
 }
 return true; // both size and content are equal
}

lunedì 10 marzo 14

Type checking

• C++ has a stricter type checking than C:
depending on the parameter cast you
determine the method that is executed !

• E.g.: cast void pointers when assigning them
to other pointers (in C it compiles)

lunedì 10 marzo 14

Object creation

• Once a class is defined we can create the
instances (objects) from it, as it is done for the
variables of base types.

• Creation can be static (on the stack) or dynamic
(on the heap)

• The code of the methods is represented in the
code segment, shared between all the instances
of a class

• each object has the address of the function
that implements the methods

lunedì 10 marzo 14

Dynamic object creation

• It is similar to the use of malloc/free
functions, but syntactically simplified, using new
and delete:

Stack* sPtr;

sPtr = new Stack;

...

delete sPtr;

lunedì 10 marzo 14

Dynamic object creation

• The operator new automatically calculates the
size of memory to be allocated, e.g.:

int* p = new int[5]; // gets space
 // for 5 int
delete[] p; // if new has [] then
 // also delete must
 // have []

lunedì 10 marzo 14

Constructors

• A member function that will be invoked when an object of that
class is created. Returns no values.

• Always has the same name as the class. Constructors generally
perform some kind of initialisation on a new object. If not
constructor is defined a default one is created, with no
parameters .

• Common to overload a constructor function (i.e. provide
several versions) so the object can be created in a number of
different ways.

• Consider how objects of a new type may be created and what
constructors are needed.

lunedì 10 marzo 14

Constructors - cont.

• If no constructor is defined the compile
generates a “default” constructor that takes
no parameters

• The default constructor is invoked (usually)
without parentheses, e.g. in the previous
example:

sPtr = new Stack;

lunedì 10 marzo 14

Constructors - cont.

• If a class has any constructors but no default
constructor, its creation will be constrained to
situations handled by the constructors, e.g.
class B {
public:

B(int i) { ... }
};
B b1; // illegal
B b3(123); // ok

lunedì 10 marzo 14

Constructors - cont.

• If a class has any constructors but no default
constructor, its creation will be constrained to
situations handled by the constructors, e.g.
class B {
public:

B(int i) { ... }
};
B b1; // illegal
B b3(123); // ok

If you really need
this, then you’ll have
to write the default
constructor
explicitly

lunedì 10 marzo 14

Constructors - cont.

• There’s a compact and compiler-friendly way to
init attributes in a constructor:
class Stack {
public:

Stack(int s) : TOS(0), size(s), buffer(new data[s])
{...};

protected:
int TOS;
int size;
data *buffer;

}

lunedì 10 marzo 14

Constructors - cont.

• There’s a compact and compiler-friendly way to
init attributes in a constructor:
class Stack {
public:

Stack(int s) : TOS(0), size(s), buffer(new data[s])
{...};

protected:
int TOS;
int size;
data *buffer;

}

Use the same order of the
attributes declaration, or
you’ll get a compiler warning

lunedì 10 marzo 14

Constructors - cont.

• Constructors are public (usually, but not
necessarily)

• If we do not want that a class is instantiated
we can declare a constructor as protected.
We can instantiate derived classes (if their
constructor is public).

• In other cases we can declare a constructor as
private.

• typically its use is related to static
methods

lunedì 10 marzo 14

Explicit constructors

• C++ constructors that have just one
parameter automatically perform implicit type
conversion, e.g.:
if you pass an int when the constructor
expects a string pointer parameter, the
compiler will add the code it must have to
convert the int to a string pointer.

• You can add explicit to the constructor
declaration to prevent these implicit
conversions.

lunedì 10 marzo 14

Explicit constructors - cont.

• Declaring a constructor that has multiple
arguments to be explicit has no effect, because
such constructors cannot take part in implicit
conversions.

• However, explicit will have an effect if a
constructor has multiple arguments and all
except one of the arguments has a default
value.

lunedì 10 marzo 14

Explicit constructors: example
class A {
public:
 A();
};

class B {
public:
 explicit B(int x=0, bool b=true);
};

class C {
public:
 explicit C(int x);
};

void doSomething(B objB);

B objB1;

doSomething(bObj1); // OK

B objB2(28); // OK, b arg is set
to default

doSomething(28); // BAD: we need a
B obj, and we do not allow implicit
conversion

doSomething(B(28)); // OK

doSomething(“foo”); // BAD, thanks
the compiler for not allowing it

lunedì 10 marzo 14

Explicit constructors - cont.

• It’s preferable to use explicit constructor
(there is even a Google C++ guideline for it)

• When designing a type (i.e. class) think about
what conversions should be allowed:
should you write a type conversion function
or a non explicit constructor (with a single
argument) ?

lunedì 10 marzo 14

Delegate constructors

• A delegating constructor uses another
constructor from its own class to perform its
initialization.

• Introduced in C++11

• It’s useful if there’s loot of duplicated code in
the constructor: move it to a common
constructor

lunedì 10 marzo 14

Delegate constructors

• A delegating constructor uses another
constructor from its own class to perform its
initialization.

• Introduced in C++11

• It’s useful if there’s loot of duplicated code in
the constructor: move it to a common
constructor

•It means that you need:
• a C++11 compiler (e.g. g++ version >= 4.2 or clang++ >= 3.x)
• use the appropriate switches to activate C++11 compilation

•e.g. “-std=c++11 -stdlib=libc++” for clang++

lunedì 10 marzo 14

Delegate constructors - example
class Sales_data {
 public:

// non delegating constructor, uses init. list
 Sales_data(std::string s, unsigned cnt, double price):
 bookNo(s), units_sold(cnt), revenue(cnt*price) { }

// remaining constructors all delegate
// to another constructor

 Sales_data(): Sales_data("", 0, 0) {}
 Sales_data(std::string s): Sales_data(s, 0,0) {}
 Sales_data(std::istream &is): Sales_data() {}

// other members
// ...
};

lunedì 10 marzo 14

Delegate constructors - example
class Sales_data {
 public:

// non delegating constructor, uses init. list
 Sales_data(std::string s, unsigned cnt, double price):
 bookNo(s), units_sold(cnt), revenue(cnt*price) { }

// remaining constructors all delegate
// to another constructor

 Sales_data(): Sales_data("", 0, 0) {}
 Sales_data(std::string s): Sales_data(s, 0,0) {}
 Sales_data(std::istream &is): Sales_data() {}

// other members
// ...
};

•It’s much safer than writing the
common code in a private method
•Can use common initialization list
for const and references
•Java language has had it for years...
uses this(xxx) instead of
constructor name

lunedì 10 marzo 14

Destructors

• It’s a method with the name of he class
preceded by ~, e.g.: ~Stack();

• No parameters, no return values, no overload

• Called automatically when an object is
destroyed

• should perform housekeeping

lunedì 10 marzo 14

C’tor and D’tor

class Stack {
public:
 Stack(int s);
 ~Stack();
 //..
protected:
 int TOS;
 data* buffer;
 int size;

}

// C’tor allocates memory
Stack::Stack(int s)
{
 TOS=0;
 size=s;
 buffer = new data[size];
}

// D’tor has to release memory
Stack::~Stack()
{
 delete(buffer);
}

lunedì 10 marzo 14

Self reference

• An object can refer to itself using the keyword
this

• An object implicitly uses this when it refers to a
method or attribute

Stack::Stack(int s)
{
 TOS=0;
 size=s;
 buffer = new data[size];
}

Stack::Stack(int s)
{
 this->TOS=0;
 this->size=s;
 this->buffer = new data[this->size];
}

lunedì 10 marzo 14

Self reference - cont.

• The use of this is essential when an object has to
pass a reference of itself to another object

• A typical application is the callback: obj A gives a
reference to itself that will be used by obj B to
invoke a method on obj A

• This is used to implement inversion of
responsibility schemas:
obj A does not call obj B to perform an
operation but lets obj B call obj A

lunedì 10 marzo 14

Self reference - example
class Observer;
class Subject;
class Observer {
public:
 void update(subject*
pSubj);
 int getState() {
 return state;
 }
private:
 int state;
};

class Subject {
public:
 Subject(Observer* pObs);
 void setState(int aState);
 int getState() {
 return state;
 }
private:
 int state;
 Observer* pObs;
}

Observer::update(subject* pSubj) {
 if (...) // possible condition that
 // starts an update
 this->state = pSubj->getState();
}
Subject::Subject(Observer* pObs) {
 this->pObs = pObs;
}
Subject::setState(int aState) {
 this->state = aState;
 this->pObs->update(this);
}

int main() {
 Subject* pSubj;
 Observer* pObs;
 pObs = new Observer;
 pSubj = new Subject(pObs);
 // ...
 pSubj->setState(10);
 cout << “subj state: “ << pSubj->getState << endl;
 cout << “obs state: “ << pObs->getState() << endl;
}

lunedì 10 marzo 14

Static members

• A static member is associated with the
class, not with object (instance of the
class), i.e. there’s only one copy of the
member for all the instances

• extends the static variables of C

• Static data member: one copy of the
variable

• Static function member: can be invoked
without requiring an object

lunedì 10 marzo 14

Static data members
class Point {
public:
 Point() {
 x=y=0;
 n++;
 }
 ~Point() {
 n--;
 }
 int count() const {
 return n;
 }
 // ...
private:
 int x,y;
 static int n; // declaration
};

// definition: must be in
// namespace scope
int Point::n = 0;

int main() {
 Point a,b;
 cout << “n: “ << a.count()
<< endl;

 cout << “n: “ << b.count()
<< endl;
}

lunedì 10 marzo 14

Static method members
class Point {
public:
 Point() {
 x=y=0;
 n++;
 }
 ~Point() {
 n--;
 }
 static int n;
 static float distance(const
Point a, const Point b) {
 //...calc distance
 }
 // ...
private:
 int x,y;
}

// definition: must be in
// namespace scope
int Point::n = 0;

int main() {
 // access static members even before
 // the creation of any instance of
 // the class
 cout << “n: “ << Point::n << endl;
 Point a,b;
 // set a and b coordinates
 Point::distance(a,b);
}

lunedì 10 marzo 14

Static method members
class Point {
public:
 Point() {
 x=y=0;
 n++;
 }
 ~Point() {
 n--;
 }
 static int n;
 static float distance(const
Point a, const Point b) {
 //...calc distance
 }
 // ...
private:
 int x,y;
}

// definition: must be in
// namespace scope
int Point::n = 0;

int main() {
 // access static members even before
 // the creation of any instance of
 // the class
 cout << “n: “ << Point::n << endl;
 Point a,b;
 // set a and b coordinates
 Point::distance(a,b);
}

Remind to:
1. declare the static attribute
2. define the static attribute

lunedì 10 marzo 14

Friend

• A class can allow access to its members (even
if private) declaring that top-level functions (or
even classes) are its friends

• Friends should only used in very special
situations, e.g. I/O operator overloads where it
is not desirable to provide accessor member
functions.

• It hinders encapsulation

lunedì 10 marzo 14

Friend - cont.

class Point{
private:
 int x,y;
public:
 friend bool operator==(Point a,
Point b);
 Point() : x(0), y(0) {};
 //...
};

bool operator==(Point a, Point b) {
 if ((a.x != b.x) ||
 (a.y != b.y))
 return false;
 else
 return true;
}

int main() {
 Point p, q;
 //...
 if (p == q)
 std::cout << "p and q are equal"
<< endl;
 return 0;
}

lunedì 10 marzo 14

Friend - cont.

• Spend some time to evaluate if you can avoid a
friend... the previous code could be rewritten as:

class Point{
private:
 int x,y;
public:
 bool operator==(Point right);
 Point() : x(0), y(0) {};
 //...
};

bool Point::operator==(Point right) {
 if ((this->x != right.x) ||
 (this->y != right.y))
 return false;
 else
 return true;
}

int main() {
 Point p, q;
 //...
 if (p == q)
 std::cout << "p and q are equal"
<< endl;
 return 0;
}

lunedì 10 marzo 14

Friend - cont.

• Spend some time to evaluate if you can avoid a
friend... the previous code could be rewritten as:

class Point{
private:
 int x,y;
public:
 bool operator==(Point right);
 Point() : x(0), y(0) {};
 //...
};

bool Point::operator==(Point right) {
 if ((this->x != right.x) ||
 (this->y != right.y))
 return false;
 else
 return true;
}

int main() {
 Point p, q;
 //...
 if (p == q)
 std::cout << "p and q are equal"
<< endl;
 return 0;
}

Now the friend function
has been transformed in a
class method... it needs just
1 parameter

lunedì 10 marzo 14

Inner class

• A inner class or nested class is a class declared
entirely within the body of another class or
interface. An instance of an inner class cannot
be instantiated without being bound to a top-
level class.

• Inner classes allow for the object orientation
of certain parts of the program that would
otherwise not be encapsulated into a class.

lunedì 10 marzo 14

http://en.wikipedia.org/wiki/Class_(computer_science)
http://en.wikipedia.org/wiki/Class_(computer_science)

Inner class - cont.

• C++ nested classes are in the scope of their
enclosing classes.

• Except by using explicit pointers, references,
and object names, declarations in a nested
class can use only type names, static members,
and enumerators from the enclosing class,
without qualifying the name
(other classes that are not one of its enclosing
classes have to qualify its name with its
enclosing class’s name).

lunedì 10 marzo 14

Inner class
• Let a nested class to access the non-static

members of the including class using friend
class Outer {
	 string name;

	 // Define a inner class:
	 class Inner1;
	 friend class Outer::Inner1;
	 class Inner1 {
	 	 Outer* parent;
	 	 public:
	 	 	 Inner1(Outer* p) : parent(p) {}
	 	 	 void foo() {
	 	 	 	 // Accesses data in the
 // outer class object
	 	 	 	 cout<< parent->name<< endl;
	 	 	 }
 } inner1;

	 // Define a second inner class:
	 class Inner2;
	 friend class Outer::Inner2;
	 class Inner2 {
	 	 Outer* parent;
	 	 public:
	 	 	 Inner2(Outer* p) : parent(p) {}
	 	 void bar() {
	 	 	 cout<< parent->name<< endl;
	 	 }
	 } inner2;

	 public:
	 	 Outer(const string& nm)
	 	 	 : name(nm), inner1(this),
 inner2(this) {}
}; // Outer

lunedì 10 marzo 14

Single Responsibility Principle

• Every object in the system should have a single
responsibility, and all the object’s services
should be focused on carrying out that single
responsibility

• A class should have only one reason to change

• A responsibility can be defined as a reason to
change

• It’s a concept related to cohesion

lunedì 10 marzo 14

SRP & OCP

• Ideally, following the Open Closed Principle,
means to to write a class or a method and
then turn my back on it, comfortable that it
does its job and I won’t have to go back and
change it.

• It’s a a “laudable goal”, but elusive in practice:
you’ll never reach true Open-Closed nirvana,
but you can get close by following the related
Single Responsibility Principle: a class should
have one, and only one, reason to change.

lunedì 10 marzo 14

SRP - cont

• As an example, consider a module that
compiles and prints a report: the content of the
report can change, the format of the report
can change.

• The single responsibility principle says that
these two aspects of the problem are really
two separate responsibilities, and should
therefore be in separate classes or modules.

• Do not couple two things that change for
different reasons at different times.

lunedì 10 marzo 14

SRP: example

• Here’s a simple test to check if a class follows
SRP: for each method of the class write a line
that says

The class name write method here itself.

• Adjust grammar and syntax the read aloud
each line. Does it make sense ?

• If it doesn’t probably the method belongs to a
different class. Use common sense !

lunedì 10 marzo 14

SRP: example - cont.

• Apply the method to the Automobile class:

• We are still a bit far from having cars driving
themselves (we may need a Driver)

• Surely they won’t change their tires or wash
themselves (Mechanic and CarWash may help...)

• Think very well about the meaning of the methods:
getOil may simply mean that the car has a sensor

start()
stop()
changeTires(Tire[])
drive()
wash()
checkOil()
getOil() : int

Automobile

lunedì 10 marzo 14

Credits

• These slides are (heavily) based on the
material of:

• Dr. Ian Richards, CSC2402, Univ. of Southern
Queensland

• Prof. Paolo Frasconi, IIN 167, Univ. di Firenze

• “Head first: Object Oriented Analysis and
Design”, O’Reilly

lunedì 10 marzo 14

